AME observations with COSMOSOMAS

Ricardo Génova Santos Instituto de Astrofísica de Canarias

AME workshop. Manchester 2-4 july 2012

1. The COSMOSOMAS experiment

 COSMOSOMAS observations of AME in diffuse regions (Fernández-Cerezo et al. 2006, Hildebrandt et al. 2007)

- 3. Perseus molecular complex
 - 3.1 First results. Total intensity (Watson et al. 2005)
 - 3.2 Polarization upper limit (Battistelli et al. 2006)
- 4. The Pleiades reflection nebula (Génova-Santos et al. 2011)
- 5. Cosmosomas AME observations in combination with Planck (Planck collaboration et al. 2011)
- 6. Other AME studies from the Teide observatory
- 7. The QUIJOTE-CMB experiment

Cosmosomas

seus

Planck regions

http://www.iac.es/proyecto/cmb/cosmosomas

Quijote

- Two circular scanning instruments
- Lock-in analysis to remove the first 7 harmonics to suppress 1/f noise
- Located at the Teide Observatory, Tenerife. Altitutde: 2390 m. Operative: 1998-2008

Pleiades

Instrument	Nchan	Freq (GHz)	Polarization	Primary diameter	Beam sizes (deg)	Sensitivity (µK/beam/
Cosmol1	2	10-12 (10.9)	Yes	2.5 m	0.9, 0.9	~650
Cosmo15	3	12-17 (12.7, 14.5 16.3)	No	3.0 m	1.0, 0.9, 0.8	~650, 750, 950

• Team members: R. Rebolo (PI), E. Battistelli, S. Fernández-Cerezo, J. Gallegos, R. Génova-Santos, C. Gutiérrez, S. Hildebrandt, R. Hoyland, J. Macías, J.A. Rubiño, R.A. Watson

Diffuse regions

Perseus Perseus

Pleiades

Planck regions

AME from OT 🧯 Quijote

Scanning primary mirror, with a 5° tilt
Circular path on the sky with a diameter of 20°
360° x 20° daily maps produced

2006 COSMO15 results

osmosomas

 Clear correlated signals between COSMO15 channels and DIRBE maps at 100 and 240 µm over a region of 6500 deg² (Fernández-Cerezo et al. 2006)

Diffuse regions

Persells

Pleiades

• Average correlated signal 7.3 \pm 0.7 μ K and 5.0 \pm 0.7 μ K

• Signal decreases at high b

 DIRBE correlations with WMAP/ COSMO15 increase with decreasing frequency. Flattening below ≈17 GHz

COSMO15/WMAP correlations with DIRBE 100m

AME from OT

Quijote

Planck regions

Template	σ Template	C1	C2	C3	WMAP_K	WMAP_Ka	WMAP_Q	WMAP_V	WMAP_W
				$ b > 30^{\circ}$					
408 MHz	$4.88 \times 10^{5} \mu K$	17.0 ± 1.1	12.3 ± 1.2	15.4 ± 2.4	4.7 ± 0.3	2.1 ± 0.3	1.7 ± 0.3	1.1 ± 0.3	0.6 ± 0.3
408 MHz (Dss)	$4.79 \times 10^{5} \mu K$	9.3 ± 1.1	8.7 ± 1.2	7.3 ± 2.4	3.7 ± 0.3	2.0 ± 0.3	1.8 ± 0.3	1.4 ± 0.3	1.1 ± 0.3
1420 MHz	2.54 × 10 ⁴ μK	20.7 ± 1.1	13.7 ± 1.2	13.2 ± 2.5	5.2 ± 0.3	2.1 ± 0.3	1.4 ± 0.3	0.6 ± 0.3	0.0 ± 0.3
Hα	0.07 R	2.6 ± 1.1	1.4 ± 1.2	-2.2 ± 2.4	0.1 ± 0.2	0.5 ± 0.2	0.1 ± 0.2	0.1 ± 0.2	0.4 ± 0.2
DIRBE 100 μm	0.11	7.4 ± 1.1	7.5 ± 1.1	6.5 ± 2.3	2.9 ± 0.2	0.5 ± 0.2	0.0 ± 0.1	-0.4 ± 0.2	-0.5 ± 0.2
DIRBE 240 μm	0.27	6.0 ± 1.1	3.4 ± 1.1	6.5 ± 2.4	2.1 ± 0.2	0.3 ± 0.2	0.1 ± 0.2	-0.4 ± 0.2	-0.4 ± 0.2

(Fernández-Cerezo et al. 2006)

omas i Di

Diffuse regions

Perseus 📜 Pleiades

Planck regions

AME from OT

Quijote

2007 COSMO11 results

- Clear correlated signals between
 COSMOSOMAS channels and DIRBE maps at 100 and 240 µm over a region of 6500 deg² (Hildebrandt et al. 2007)
- b-dependence indicates Galactic origin. Still significant at lbl>50°
- Important fraction coming from bright dusty regions, where the free-free is not well traced
- Spinning dust model favoured over power-law

COSMO11,15/WMAP correlations with DIRBE 100m

Template	1420 MHz	C11 1	C11 2	C13	C15	C16	WMAP_K	WMAP_Ka	WMAP_Q	WMAP_W
					$ b > 30^{\circ}$					
Λ 100	525.1 ± 569.1	9.1 ± 0.9	10.1 ± 0.8	4.4 ± 0.9	4.9 ± 1.1	7.0 ± 2.7	2.7 ± 0.3	0.7 ± 0.3	0.3 ± 0.2	-0.1 ± 0.2
DIRBE08	518.0 ± 578.1	11.4 ± 0.9	12.5 ± 0.8	5.8 ± 0.9	6.3 ± 1.2	5.9 ± 2.9	2.8 ± 0.3	0.7 ± 0.3	0.3 ± 0.2	-0.2 ± 0.2
DIRBE10	616.0 ± 566.1	9.7 ± 0.9	11.3 ± 0.8	3.7 ± 0.9	1.9 ± 1.2	5.2 ± 2.9	2.1 ± 0.3	0.5 ± 0.3	0.2 ± 0.2	-0.3 ± 0.2
					$ b > 40^{\circ}$					
A 100	-617.0 ± 663.0	6.2 ± 1.0	7.2 ± 1.0	0.4 ± 1.2	3.4 ± 1.4	1.5 ± 3.5	1.5 ± 0.3	0.6 ± 0.3	0.3 ± 0.3	0.1 ± 0.3
DIRBE08	-955.0 ± 663.0	6.1 ± 1.1	7.4 ± 1.0	1.0 ± 1.2	2.3 ± 1.4	0.0 ± 3.5	1.2 ± 0.3	0.5 ± 0.3	0.2 ± 0.3	0.0 ± 0.3
DIRBE10	-314.0 ± 657.1	4.7 ± 1.0	6.2 ± 0.9	1.4 ± 1.2	-0.7 ± 1.5	-0.6 ± 3.5	0.8 ± 0.3	0.3 ± 0.3	0.2 ± 0.3	-0.1 ± 0.3
					$ b > 50^{\circ}$					
Λ 100	-1487.0 ± 732.1	2.6 ± 1.2	1.8 ± 1.1	2.6 ± 1.3	3.6 ± 1.6	-2.8 ± 4.0	1.4 ± 0.3	0.5 ± 0.3	0.3 ± 0.3	0.2 ± 0.3
DIRBE08	-1660.0 ± 731.1	1.6 ± 1.2	1.6 ± 1.1	2.6 ± 1.3	2.0 ± 1.6	-5.0 ± 4.0	0.9 ± 0.3	0.4 ± 0.3	0.2 ± 0.3	0.0 ± 0.3
DIRBE10	-651.1 ± 723.0	2.8 ± 1.1	4.4 ± 1.0	3.6 ± 1.3	0.2 ± 1.6	-5.0 ± 3.9	0.8 ± 0.3	0.2 ± 0.3	0.2 ± 0.3	-0.1 ± 0.3

Diffuse regions

Perseus

(J2000)

Dec

(J2000)

lanck regions

Ounote

Intensity

• G159.6-18.5 lies within the Perseus molecular complex, at a distance of 260 pc

• Region heated by the O9.5-B0 V star HD-278942

• Watson et al. (2005) found a rising spectral index of +1.4 between 11 and 17 GHz in Cosmosomas data, and a 9σ excess in WMAP-lyr data at 22 GHz with respect to standard free-free emission

• Not explained by UC HII regions or **GPS** sources

• First unambiguous detection of AME in an individual cloud

• Residual AME spectrum well fitted by a spinning dust model (WNN+MC)

 ν (GHz)

Polarization constraints

Diffuse regions

• Used the two COSMO11 receivers (C111 and C112), sensitive to orthogonal polarizations

Perseus

• Q = $I_{0^{\circ}}$ - $I_{90^{\circ}}$ measured between 2004 March and 2005 May. U = $I_{+45^{\circ}}$ - $I_{-45^{\circ}}$ measured between 2005 June and 2006 February

Planck regions

AME from ()'

Ouijote

• Systematics assessment through nearby NGC1499 and 3C84. Less than 1%

⁽Battistelli et al. 2006)

- Result: Q/I = -0.2±1.0 %, U/I = -3.4 +1.8-1.4 %, Π = 3.4 +1.5-1.9 % (2 σ)
- First constraints on the polarization properties of AME
- This result indicates that the particles responsible for AME are not significantly aligned in a common direction. Fully consistent with the prediction from electric dipole emission

smosomas 🔢 Diffuse regions

ns Perseus

Pleiades

i Planck regions

AME from OT **E** Quijote

• Predicted very low free-free emission, <0.03 Jy. $I_{H\alpha}$ ~ 0.12 R (0.092 R before corr). EM=0.27 cm⁻⁶ pc

Maps

Cosmosomas

Cosmosomas maps. No clear emission. 3σ upper limits will be derived

Perseus

Diffuse regions

Pleiades

Planck regions

WMAP maps

(Génova-Santos et al. 2011)

AME from OT

Quijote

Fluxes

Diffuse regions

Perseus

AME from OT 🧯 Quijote

Case A. No CMB subtractionCase B. CMB subtracted using ILC

Fluxes and Dust-correlated Emissivities									
		Case A			Case B				
v (GHz)	Flux (Jy)	Residual Flux (Jy)	Correlation µK (MJy sr ⁻¹) ⁻¹	Flux (Jy)	Residual Flux (Jy)	Correlation µK (MJy sr ⁻¹) ⁻¹			
0.408	<1.14	<1.11		<1.14	<1.11				
0.820	< 0.89	< 0.87		< 0.89	< 0.87				
1.42	<0.51	< 0.49		< 0.51	< 0.49				
10.9	<1.04	< 0.87		< 0.94	< 0.91				
12.7	<1.97	<1.75		<1.83	<1.80				
14.7	<1.77	<1.48		<1.58	<1.56				
16.3	<2.43	<2.08		<2.20	<2.17				
22.8	$2.60 \pm 0.06 (\pm 0.51)$	1.95 ± 0.06	3.01 ± 0.27	2.15 ± 0.12	2.12 ± 0.12	4.36 ± 0.17			
33.0	2.55 ± 0.10 (± 1.06)	1.21 ± 0.12	0.66 ± 0.17	1.61 ± 0.15	1.55 ± 0.15	2.01 ± 0.09			
40.7	$2.64 \pm 0.15 (\pm 1.59)$	0.64 ± 0.17	-0.32 ± 0.16	1.24 ± 0.18	1.12 ± 0.18	1.03 ± 0.03			
60.8	4.71 ± 0.36 (± 3.37)	0.39 ± 0.40	-0.77 ± 0.16	1.75 ± 0.38	1.23 ± 0.38	0.59 ± 0.02			
93.5	$9.12 \pm 0.89 (\pm 7.03)$	-0.52 ± 0.97	-0.25 ± 0.12	2.94 ± 0.90	0.37 ± 0.90	1.10 ± 0.05			
1249.1	11931 ± 185	9 ± 394		11931 ± 185	-366 ± 195				
2141.4	23469 ± 249	-14 ± 595		23469 ± 249	618 ± 262				
2997.9	17959± 89	1 ± 375		17959 ± 89	-47 ± 101				

• 17.7 σ detection of AME at 23 GHz

• Dust emissivity, 4.36 \pm 0.17 µK/(MJy sr⁻¹) at 22.8 GHz / 100 µm, lower than in dust clouds (~ 11 - 35 µK/(MJy sr⁻¹); Davies et al. 2006), and more similar to HII regions (3.3 \pm 1.7 µK/(MJy sr⁻¹); Dickinson et al. 2007)

Diffuse regions

Pleiades

es i Pla

Planck regions

E from OT 🔢 Quijote

SED modelling

A - CMB + molecular phase

Perseus

	Model Parameters	
T _e (K)	8000	
EM (cm ⁻⁶ pc)	0.267	
	Molecular	Atomic
$n_{\rm H} ({\rm cm}^{-3})$	300	200
$T_{g}(K)$	20	1000
Х	0.03	10
x _H (ppm)	9.2	373
x _C (ppm)	1	100
у	1	0.1
β (D)	9.34	9.34
	Case A	
N _H (10 ²⁰ cm ⁻²)	6.94 ± 0.22	
τ ₁₀₀	(6.09 ± 0.06)	×10 ⁻⁴
$\beta_{\rm d}$	2.29 ± 0.	02
T _d (K)	20.12 ± 0	.03
$\Delta T_{\rm emb}$ (μ K)	42.2 ± 1	.9
	Case B	4
N _H (10 ²⁰ cm ⁻²)	6.60 ± 0.11	0.30 ± 0.01
τ ₁₀₀	(3.302 ± 0.004)) × 10 ⁻⁴
β_{d}	1.869 ± 0.	.004
T _d (K)	22.008 ± 0	.005

N_H much lower than other AME regions (117×10²⁰ cm⁻² in Perseus and 171×10²⁰ cm⁻² in Q-Ophiuchi)
Consistent with Bohlin et al. (1978) scaling relation, 5.8×10²⁰ cm⁻² (using E_{B-V} = 0.1 mag)

SD spectra from SPUDST.2

B - Atomic + molecular phases

• Emissivity at 31 GHz (intensity at 31 GHz divided by hydrogen column density): (3.03 ± 0.33)×10⁻²⁴ MJy sr⁻¹ cm²

(Vidal et al. 2011)

Quijote

Ancillary data ⇔ COSMOSOMAS

Tenerife experiments

• Three double-antenna radio-telescopes at 10, 15 and 33 GHz

Persells

Pleiades

• Colaboration between the IAC and JBO

Diffuse regions

- Operative: 1984-2000
- Statistical detections of AME: de Oliveira-Costa et al. (1999, 2002, 2004), Mukherjee et al. 2001

Correlations with Dirbe

Correlations with WMAP-K band

Planck regions

(de Oliveira-Costa et al. 2004)

AME from OT

Quijote

VSA

nosomas

Diffuse regions

Perseus

Pleiades

Planck regions

AME from OT

Quijote

• 14-antennae interferometer at 33 GHz

- Colaboration between Cambridge, JBO and the IAC
- Operative: 2001-2008
- Follow-up of Perseus at 33 GHz, contours, over-plotted on IRIS 100 μm

≈10% of the diffuse flux density detected by COSMOSOMAS

(Tibbs et al. 2010)

Cosmosoma

VSA

Diffuse regions

regions

Perseus

Pleiades

Planck regions

AME from OT

Quijote

• Galactic plane survey l = 27°-46°, lbl<4° (Todorovic et al. 2010)

• Evidence of AME found towards 9 HII regions

• AME peak at 15 GHz. Average radio/FIR emissivity of 4.65±0.40 µK/(MJy/sr)⁻¹

• Tentative detection of AME found towards 3C396 SNR (Scaife et al. 2007)

The Q-U-I JOint TEnerife Experiment

Jiffuse regions

* Aims:

• To constrain (or to detect) the primordial B-mode signal it r>0.05 (main science driver)

Pleiades

Perseus

Planck regions

Quijote

AME from O

• To complement Planck at low frequencies. In combination with Planck, improve the sensitivity to r

• To measure polarized foregrounds (synchrotron and AME) with high sensitivity, in order to correct them in future space missions aiming at r=0.001

Telescopes and instruments. Two phases, fully funded:

• Phase I. First telescope (QT1), a multi-frequency instrument (MFI) @ 11-30 GHz, a second instrument (TGI) with 31 polarimeters @ 30 GHz and a polarized source subtractor @ 30 GHz

• Phase II. Second telescope (QT2), and a third instrument (FGI) with ~40 polarimeters @ 42 GHz

Basic facts

- Site: Teide observatory (2400 m a.s.l.)
- Sky coverage: 10,000 deg²
- Angular resolution: 0.92° to 0.28°

The QUIJOTE collaboration

* Instituto de Astrofísica de Canarias (IAC)

Perseus

R. Rebolo (PI), J.A. Rubiño-Martín (PS), M. Aguiar, R. Génova-Santos, F. Gómez-Reñasco, J.M. Herreros (PM), R. Hoyland (InstS), C.H. López-Caraballo

Planck regions

Quijote

Instituto de Física de Cantabria

)iffuse regions

E. Martínez-González, B. Barreiro, F.J. Casas, R. Fernández-Cobos, D. Herranz, M. López-Caniego, P. Vielva

Pleiades

DICOM - Universidad de Cantabria

E. Artal, B. Aja, J.L. Cano, L. de la Fuente, A. Mediavilla, J.P. Pascual, E. Villa

* JBO - University of Manchester

L. Piccirillo, R. Battye, R.D. Davies, R.J. Davis, C. Dickinson, S. Harper, B. Maffei, G. Pisano, R.A. Watson

University of Cambridge

K. Grainge, M.P. Hobson, M. Brown, A. Challinor, A.N. Lasenby, R.D.E. Saunders, P.F. Scott, H. Smith

IDOM

J. Ariño, B. Etxeita, A. Gómez, C. Gómez, G. Murga, J. Pan, R. Sanquirce, A. Vizcargüenaga

• Polarization detection: polar modulators

Diffuse regions

• Observing strategy: deep observations in selected sky areas using raster scans (~3,000 deg²), and a large survey (~10,000 deg²) using the "nominal mode" (similar to Cosmosomas)

Pleiades

Persells

Planck regions

Quijote

			MFI			TGI	FGI
Frequency (GHz)	11	13	17	19	30	30	40
Bandwidth (GHz)	2.0	2.0	2.0	2.0	8.0	8.0	10.0
Number of channels	8	8	8	8	2	124	160
Beam FWHM (deg)	0.92	0.92	0.60	0.60	0.37	0.37	0.28
T _{sys} (K)	25	25	25	25	35	35	45
Sensitivity (µK s ^{1/2})	280	280	280	280	390	50	50
Sensitivity (Jy s ^{1/2})	0.30	0.42	0.31	0.38	0.50	0.06	0.06

• Telescopes:

• Alto-azimutal mount. Maximum speed around AZ axis: 0.25 Hz. Maximum zenith angle: 60°

• Cross-dragonian design. 2.25 m (primary), 1.9 m (secondary)

Diffuse regions

erseus

Pleiades

- Installed at the Teide Observatory on
 3 May 2012
- Currently undertaking commissioning

Planck regions

Quijote

rom

tuse regions

regions

Quijote

MFI

• Integration tests of the MFI and the QT1 in the AIV room (February -March 2012)

• Currently, undertaking final modifications and last vacuum tests

• Final integration at the observatory will take place on September 2012

