# Another look at LDN 1622

Kieran Cleary Manchester AME Workshop July 2-4, 2012

# Overview

- Observational status of LDN 1622
- New CARMA & AMI data
- Spitzer spectral mapping



Wilson et al. (2005), A&A, 430, 523



Wilson et al. (2005), A&A, 430, 523



Wilson et al. (2005), A&A, 430, 523

#### TENTATIVE DETECTION OF ELECTRIC DIPOLE EMISSION FROM RAPIDLY ROTATING DUST GRAINS

DOUGLAS P. FINKBEINER<sup>1,2</sup> AND DAVID J. SCHLEGEL Princeton University, Department of Astrophysics, Peyton Hall, Princeton, NJ 08544

**CURTIS FRANK** 

University of Maryland, Department of Astronomy, College Park, MD 20742-2421

AND

CARL HEILES University of California, Berkeley, Department of Astronomy, 601 Campbell Hall, Berkeley, CA 94720 Received 2001 July 5; accepted 2001 October 22

#### TABLE 1

CORRELATION SLOPES

|       |      | RO               | RCP                 |                 | LCP              |                     |              |
|-------|------|------------------|---------------------|-----------------|------------------|---------------------|--------------|
| Name  | v    | Forward          | Return              | Forward         | Return           | Average             | $N_{\sigma}$ |
| L1622 | 5.00 | 1.29 ± 0.39      | 3.49 ± 0.84         | $0.48 \pm 0.38$ | $3.05 \pm 0.77$  | $1.31 \pm 0.25$     | 5.3          |
| L1622 | 8.25 | $1.25 \pm 0.29$  | $0.26 \pm 0.37$     | $0.67 \pm 0.41$ | $0.52 \pm 0.35$  | $0.75 \pm 0.17$     | 4.4          |
| L1622 | 8.25 | $1.14 \pm 0.37$  | $1.24 \pm 0.44$     | $1.05 \pm 0.38$ | $1.11 \pm 0.33$  | 1.13 ± 0.19         | 6.1          |
| L1622 | 9.75 | $1.65 \pm 0.67$  | $0.76 \pm 0.77$     | $0.84 \pm 0.73$ | $0.78 \pm 0.65$  | $1.03 \pm 0.35$     | 2.9          |
| LPH   | 5.00 | 53.16 ± 5.28     | 57.01 <u>+</u> 5.68 | 54.12 ± 5.39    | $58.05 \pm 5.90$ | 55.41 <u>+</u> 2.77 | 20.0         |
| LPH   | 8.25 | 25.45 ± 1.69     | 25.92 ± 1.91        | 29.16 ± 1.93    | $29.50 \pm 2.25$ | $27.22 \pm 0.96$    | 28.4         |
| LPH   | 9.75 | $23.96 \pm 2.09$ | $23.33 \pm 1.70$    | 27.89 ± 2.49    | $27.17 \pm 1.90$ | $25.25 \pm 0.99$    | 25.4         |

NOTE.—Correlation slopes for forward and return scans of RCP and LCP polarizations. These correlation slopes are for  $T_B$  vs. a prediction of 50  $\mu$ K/ $I_{100}$ , where  $I_{100}$  is the DIRBE temperature-corrected *IRAS* intensity at 100  $\mu$ m in MJy sr<sup>-1</sup>. This temperature-corrected map may be obtained by dividing the SFD98 E(B-V) prediction by 0.0184. The prediction used includes a factor of  $\frac{1}{2}$  for single-polarization measurements, so RCP and LCP are combined by averaging, not adding. Values in the table may be multiplied by 50 to obtain units of  $\mu$ K/ $I_{100}$  in order to compare to, e.g., de Oliveira-Costa et al. 1999. Note that L1622 was observed twice at 8.25 GHz.



#### MORPHOLOGICAL ANALYSIS OF THE CENTIMETER-WAVE CONTINUUM IN THE DARK CLOUD LDN 1622

S. CASASSUS, G. F. CABRERA, AND F. FÖRSTER<sup>1</sup> Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile; simon@das.uchile.cl

AND

T. J. PEARSON, A. C. S. READHEAD, AND C. DICKINSON Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125 Received 2005 June 10; accepted 2005 November 9





Matt Sieth (Stanford)

Combined observations from

Summer school Separate proposal (PI Villadsen)

Eight 3.5-m antennas (formerly the SZA), of which two outriggers

Primary beam: 11 arcmin

Sensitive to scales: 3-7 arcmin (with the 6 compact antennas)



Matt Sieth (Stanford)

CBI contours on IRAC 8um

CBI contours: 0.01, 0.02, 0.031, 0.042, 0.052 MJy/sr



#### Matt Sieth (Stanford)

Northern CBI/CARMA peak locations match

Southern CBI peak encompasses two higher resolution peaks

CBI sensitive to ~9-34 arcmin CARMA sensitive to 3-7 arcmin

CARMA resolving out all the emission seen by the CBI

CBI contours: 0.01, 0.02, 0.031, 0.042, 0.052 MJy/sr CARMA contours: 0.005, 0.011, 0.017, 0.023, 0.029 MJy/sr



### Matt Sieth (Stanford)

Reverting to the CARMA image using all the data...

CARMA data trace 8 um emission very well

## CARMA contours: 0.005, 0.011, 0.017, 0.023, 0.029 MJy/sr



AMI 13.5-18 GHz Observations:

**Yvette Perrott (Cambridge)** 

AMI SA observations

Ten 3.7-m antennas

Primary beam: 20 arcmin

Sensitive to scales: ~3-13 arcmin

AMI contours: 0.001, 0.003, 0.004, 0.006, 0.007, 0.009 MJy/sr



AMI 13.5-18 GHz Observations:

**Yvette Perrott (Cambridge)** 

AMI SA observations

Ten 3.7-m antennas

Primary beam: 20 arcmin

Sensitive to scales: ~3-13 arcmin

AMI contours: 0.001, 0.003, 0.004, 0.006, 0.007, 0.009 MJy/sr CARMA contours: 0.005, 0.011, 0.017, 0.023, 0.029 MJy/sr



CARMA 26-36 GHz Observations: AMI 13.5-18 GHz Observations:

Matt Sieth (Stanford) Yvette Perrott (Cambridge)

With matched uv coverage, now better correspondence between AMI & CARMA for northern lobe

Still regions where 31 GHz emission is detected but no 15 GHz.

AMI contours: 0.001, 0.003, 0.004, 0.006, 0.007, 0.009 MJy/sr CARMA contours: 0.005, 0.011, 0.017, 0.023, 0.029 MJy/sr



CARMA 26-36 GHz Observations: AMI 13.5-18 GHz Observations:

Matt Sieth (Stanford) Yvette Perrott (Cambridge)

#### Next steps:

- 1. Push deeper on AMI
- 2. Examine spectral indices in high SNR regions

AMI contours: 0.001, 0.003, 0.004, 0.006, 0.007, 0.009 MJy/sr CARMA contours: 0.005, 0.011, 0.017, 0.023, 0.029 MJy/sr



## **Characterizing the Dust-Correlated Emission in LDN 1622**

K. Cleary (PI), C.R. Lawrence, C. Dickinson, S. Casassus

Low-resolution IRS modules, SL and LL R  $^{\sim}$  60-130

SL coverage: 9" x 18' (1-D slice) 3".4 resolution at 14 um





## Characterizing the Dust-Correlated Emission in LDN 1622

#### Aims:

Are IRAS 12um and 25 um tracing VSG emission in LDN 1622?

Contamination by ionic lines ([Ne II] 12.8 um) or  $H_2$  pure-rotational lines?

In general, what features (line or continuum) best correlate with cm-wave emission?



Characterizing the Dust-Correlated Emission in LDN 1622

Need high-resolution radio data to match infrared

CARMA has ~3 arcmin resolution











#### BAUSCHLICHER, PEETERS, & ALLAMANDOLA (2009)

Diagnostics of physical conditions from MIR

• Degree of PAH ionization



## Diagnostics of physical conditions from MIR

• PAH size

$$rac{PAH_{6.2\mu m}}{PAH_{7.7\mu m}} \propto \mathrm{N_C}$$

- Smaller PAHs emit at shorter wavelengths, larger at longer
- 8.6 um feature due to large PAHs
- In 7.7 um complex,
  - small PAH cations -> 7.6 um component
  - 'large' (N<sub>c</sub> > 100) PAH anions -> 7.8 um component



# Future Work

- New data on LDN 1622
  - Increased resolution from CARMA and AMI
  - Spatial variation of 15-31 GHz spectral index
- Mid-infrared spectral map from Spitzer
  - Rich phenomenology of PAH features
  - Shed light on physical conditions and PAH population
  - Investigate relation with spinning dust emissivity
  - Higher resolution radio data would be nice!