H₂ – 31 GHz.

Conclusions

Simon Casassus¹, Matías Vidal^{1,2}, Pablo Castellanos^{1,3}, Clive Dickinson², Kieran Cleary⁴, Roberta Paladini⁴, Glenn White⁵, Michael Burton⁶ & CBI/CBI2 teams.

¹Departamento de Astronomía, Universidad de Chile

²Manchester ³Leiden ⁴Caltech ⁵RAL ⁶UNSW

Manchester, remote, July 2012

H₂ – 31 GHz.

Conclusions

What is the spin up mechanism? Bright radio continuum from ρ Oph W

 $H_2 = 31$ GHz. An interesting datum: 31 GHz = rovib H_2 correlation.

Conclusions

H₂ – 31 GHz.

Conclusions

What is the spin up mechanism? Bright radio continuum from ρ Oph W

$H_2 - 31$ GHz. An interesting datum: 31 GHz - rovib H_2 correlation.

Conclusions

H₂ – 31 GHz.

Conclusions

What is the spin up mechanism? Bright radio continuum from ρ Oph W

H₂ – 31 GHz.

An interesting datum: 31 GHz – rovib H₂ correlation.

Conclusions

H₂ – 31 GHz.

Conclusions

Insights from Ophiucus.

- MIPS 24 μm, IRAC 8μm, 2MASS 2.2μm, CBI2 contours.
- S 1 coincides with the brightest IR nebula, also brightest in PAHs.
- Yet no detectable radio continuum in S 1!

It's not VSG depletion. It's emissivity boost in ρ Oph W.

• If spinning dust emissivity per nucleon was independent of environment, then since PAH intensities are $\propto G_{\circ}$ (the local UV field)

 \Rightarrow $R = G_{\circ} \times I_{\nu}(31 \text{GHz})/I(\text{PAH 11.3 } \mu\text{m})$ should be constant.

 Given Spitzer IRS PAH spectroscopy, G_o from ISO, and CBI2 mosaic, R is 42 times greater in Oph W than in S 1 (at 3 σ)

 \rightarrow the zero-order approximation *I*(31) GHz \propto *N*(VSG) breaks down. Environmental factors boost the spinning dust emissivities in ρ Oph W.

What is boosting spinning dust in ρ Oph W?

- Not G_o: from *ISO* big-grain T_d in S 1 is ~35 K and > than in ρ Oph W.
- Plasma drag (collisions with C⁺ ions)? Models predict ~ linear dependence of $j_{\nu}/n_{\rm H}$ as a function of $n_{\rm H}$ (see Ali-Haïmoud et al. 2009). \Rightarrow search for carbon RRLs and correlate with continuum.
- Recoil momentum from H₂ formation? ⇒ search for kinematic signature in emergent H₂.
- \Rightarrow Need much more data!

H₂ – 31 GHz.

Conclusions

Preliminary results from ATCA

Conclusions

Preliminary results from ATCA

The matched beams at 8.8 GHz and 20.2 GHz allow placing limits on the spectral index ($F_{\nu} \propto \nu^{\alpha}$):

 $\alpha_{\rm 8.8}^{\rm 20.2}>$ 3.0 at 3 $\sigma,$

so we can rule out any thermal emission.

Does 20 GHz follow PAHs on 30 arcsec scales?

Surprisingly well in ρ Oph W, despite differences with S 1.

Simulated ATCA-IRAC 8μ m contours overlaid on ATCA grey scale. Note spectral variations.

Conclusions

Search for C RRLs

- Pankonin & Walmsley (1978) missed ρ Oph W, but detected C90α and C91α from S 1.
- ρ Oph W: MOPRA 3 σ limits on C73 α is 73 mJy beam⁻¹ in a 30 arcsec beam (Casassus et al. 2008).
- ρ Oph W: ATCA CABB 3 σ limit on C71 α , C72 α and C73 α is 6 mJy beam⁻¹.
- Expected C71 α intensity is ~1 mJy beam⁻¹....

H₂ – 31 GHz.

An interesting datum: 31 GHz – $H_2(0-0)$ correlation.

S1: top. ρ **Oph W**: bottom. Note H₂(0-0)S(2) at 12.278 μ m.

31 GHz – $H_2(0-0)S(2)$ correlation: 2 points + origin.

	ρ Oph W	SR 3	S 1	S 1 off
H ₂ (0-0)S(2) ^a	2.9(-7)	1.9(-7)	< 1.0(-8)	<2.7(-9)
<i>I</i> _{31GHz} ^b	2.2±0.2(-1)	1.4±0.2(-1)	< 2.4(-2)	<1.8(-3)
^a W m ⁻² sr ⁻¹ ^b MJy sr ⁻¹				

H₂ − 31 GHz.

Conclusions

UKIDSS H₂ mosaic.

WFCAM mosaic from Lucas et al. (2008).

Origin of the H₂–cm-wave correlation

 C^+ and fluorescent H_2 : The fluorescent H_2 layers in PDRs overlap with C^+ (e.g. Hollenbach & Tielens, 1997). *Plasma drag* spin-up is driven by the ions.

Spinning dust and formation pumping : Spin-up by the recoil of H_2 formation on VSG surfaces. H_2 production may be enhanced in regions of high VSG abundance. If so the H_2 near-IR spectrum should bear the signature of formation pumping.

 \Rightarrow Test through near-IR area spectroscopy.

Conclusions

Tracers of H₂ formation pumping

M17 H₂ (1-0)S(7) 1.7480µm

M17 H₂ (6-4)0(3) 1.7326µm

H₂ – 31 GHz.

Conclusions

SINFONI H₂ spectroscopy

Conclusions

H₂ formation on VSGs

- The SINFONI spectroscopy confirms the line ratios from the FP data, in support of (6-4)O(3) as formation-pumped line.
- Spectrum of ρ Oph W exhibits highest H₂(6-4)O(3)/H₂(1-0)S(7)~2 ⇒ formation pumping is very effective in ρ Oph W.
- \Rightarrow Is the formation of H₂ exciting the rotation of VSGs in ρ Oph W?
- Same UV light dissociates and excites H₂: 1 in 15 electronic transitions lead to dissociation. So for dissociation balance in steady state, the lack of H₂ emission from S 1 implies that H₂ is not efficiently forming in S 1.

Rotational excitation by H₂ formation

- The reference model by Draine & Lazarian (1998) considers H₂ formation, but neglects it. Ali-Haïmoud, Hirata & Dickinson (2009) follow Draine & Lazarian for default H₂ parameters.
- However, choice of parameters is very uncertain:
 - The probably of formation per adsorbed H atom is taken $\gamma \lesssim 0.1$ from the average H₂ formation rate of Jura (1975). However, regions of 5–10 times higher formation rates have been found (Habart et al. 2004) $\Rightarrow \gamma \lesssim 1$?
 - The kinetic energy of emergent H₂ is taken as $E_F = 0.2 \text{ eV}$, following Hunter & Watson (1978), but usual equipartition arguments in current PDR models take $E_F = 1.5 \text{ eV}$.
- We can test the effect of enhancing E_F and γ using SPDUST (Ali-Haïmoud et al.). We absorb a factor of 10 in formation kinetic energy into γ , and compare spinning dust emissivities for $\gamma = 0, 1, \text{ and } 10$.

H₂ – 31 GHz.

Conclusions

SPDUST models with enhanced H₂ formation

Red, $\gamma = 0$ Green, $\gamma = 1$ Black, $\gamma = 10$.

Quick experiment with SPDUST (Ali-Haïmoud et al. 2009) supports that H_2 formation can dominate the rotational excitation.

Conclusions

Future & on-going work

- SINFONI constraints on the H₂ formation state, and incorportation into PDR (the Meudon code).
- Measure formation kinetic energy of H₂ through CRIRES spectroscopy of formation-pumped lines in rarefied medium.
- Test H₂–31 GHz correlation through wide-field H₂(1-0)S(1) HAWKI imaging.
- Constrain physical conditions in ρ Oph W through observations of the atomic/molecular content: C I / CO transition with CHAMP+ at APEX.

H₂ – 31 GHz.

Conclusions

ALMA band 1

- Expected by 2014.
- 36–52 GHz. Not good for diffuse obs, perfect for compact obs if plasma-drag is dominant (because peak freq. rises with n_H).
- See 2009arXiv0910.1609J for science case in protoplanetary disks.