SpDUST

An overview of the implemented spinning

 dust model and its limitations
Yacine Ali-Haïmoud (IAS)

In collaboration with
Clive Dickinson, Chris Hirata and Kedron Silsbee

Spinning dust radiation: basic process

- Erickson 1957
- Hoyle \& Wickramasinghe 1970
- Ferrara \& Dettmar 1994
- Rouan et al 1992
- Draine \& Lazarian I998a,b

Power radiated classically:

$$
P=\frac{2}{3 c^{3}} \ddot{\boldsymbol{\mu}}^{2} \quad \frac{d P}{d \nu}=\frac{2}{3 c^{3}} \omega^{4} \sum_{i} P_{\mu_{i}}(\nu)
$$

Spinning dust radiation: basic

 process
Emissivity $=$

grain abundance (and size,

 shape, dipole moment)$x \mathrm{dP} / \mathrm{dv}(\mathrm{v} \mid \mathrm{J})$
$\otimes \operatorname{Proba}(\mathrm{J})$

Grain size distribution

- Typically a few percent of interstellar C in PAHs is required to reproduce the observed extinction and 3-25 $\mu \mathrm{m}$ emission.
- Assume log-normal distribution centered around $a \sim 4 \AA$, but the exact shape is uncertain.
- This is essentially an adjustable external parameter.
- See L.Verstraete's talk for more on small grains

Grain shape

- Assume grains are disks for $24<\mathrm{N}_{\mathrm{C}}<100$ and spheres for $\mathrm{N}_{\mathrm{C}}>100$.
- Reality is of course more complex

From Spitzer website

From Wright's website

Electric dipole moments

N -coronenes N -ovalenes

N -circumcoronenes

N -circum-circumcoronenes

TABLE 5
Calculated Dipole Moments for the Singly Substituted Isomers of the N-coronene, N-ovalene, N-circumcoronene, and N -circum-circumcoronene Cations

Species	Dipole Moments		
	μ_{a} (D)	μ_{b} (D)	μ (D)
N -coronene Cations			
1 N.	5.48	0.19	5.49
2N.	3.69	0.00	3.69
3N..........	2.67	0.00	2.67
N -ovalene Cations			
1N.	7.10	0.98	7.17
1^{\prime} N..	5.38	4.81	7.21
$1^{\prime \prime} \mathrm{N} .$.	4.92	4.26	6.51
$1^{\prime \prime \prime} \mathrm{N}$.	0.00	3.47	3.47
2N..	5.25	1.19	5.38
$2^{\prime} \mathrm{N}$.	1.59	3.65	3.98
3 N .	4.32	1.02	4.44
$3^{\prime} \mathrm{N}$..	1.29	1.99	2.37
4N...	0.00	1.56	1.56

Hudgins, Bauschlicher \& Allamandola 2005

Electric dipole moments

- In principle a physical model of small grains would provide shape + dipole (given charge state) at once.
- What is actually present in nature is not clear.
- Default: 3d gaussian distribution with $\left\langle\mu^{2}\right\rangle=N_{\text {at }} \beta^{2}$ with $\beta=0.4$ Debye.
Also an external adjustable parameter in SpDUST.

Spinning dust radiation: basic

 process
Emissivity $=$

grain abundance (and size,
shape, dipole moment)
$x \mathrm{dP} / \mathrm{dv}(\mathrm{V} \mid \mathrm{J})$
$\otimes \operatorname{Proba}(\mathrm{J})$

Rotational configuration of disk-like grains

- UV photons excite grain to $\mathrm{T}_{\text {vib }} \sim 1000 \mathrm{~K}$
- $T_{\text {rot }}=T_{\text {vib }}$ (at constant J) due to efficient rotation-vibration coupling
- Grain cools but $T_{\text {rot }}$ freezes at $T_{f r} \gtrsim 70 \mathrm{~K}$
$P(\cos \theta \mid J) \propto \exp \left[-\frac{E(J, \theta)}{k T_{\mathrm{fr}}}\right]$, with $E(J, \theta) \equiv \frac{J^{2}}{2 I_{s}}\left[1-\frac{1}{2} \cos ^{2} \theta\right]$
$T_{\mathrm{fr}} \ll J^{2} / I_{s} \Rightarrow \theta=0(\pi) \quad, \quad T_{\mathrm{fr}} \gg J^{2} / I_{s} \Rightarrow \theta$ randomized

Rotational configuration of disk-like grains

- In SpDUST: either $\mathrm{T}_{\text {fr }} \ll$ E rot $^{\text {(case I, as in }}$ DL98), or $T_{f r} \gg E_{\text {rot }}$ (case 2, SpDUST.2).
- Case 2 results in enhanced emissivity due to larger rotational frequencies ($\sim x 2$, for a given J
-- but characteristic J is smaller) See T. Hoang's talk for more

Spinning dust radiation: basic

 process
Emissivity $=$

grain abundance (and size,
shape, dipole moment)

$$
x \mathrm{dP} / \mathrm{dv}(\mathrm{v} \mid \mathrm{J})
$$

$\otimes \operatorname{Proba}(\mathrm{J})$

Angular momentum distribution:

Proba(J|environment)

- In all generality, should solve a master equation:

$$
\frac{\partial f_{\boldsymbol{J}}}{\partial t}=\int d \boldsymbol{J}^{\prime}\left[f_{\boldsymbol{J}^{\prime}} T\left(\boldsymbol{J}^{\prime} \rightarrow \boldsymbol{J}\right)-f_{\boldsymbol{J}} T\left(\boldsymbol{J} \rightarrow \boldsymbol{J}^{\prime}\right)\right]=0
$$

- In SpDUST, as in DL98, we assume $\left\langle\Delta J^{2}\right\rangle \ll J^{2}$

See T. Hoang's talk for regime of validity of this assumption

- Replace master equation by Fokker-Planck equation:

$$
\frac{\partial f_{J}}{\partial t}=-\frac{\partial}{\partial \boldsymbol{J}}\left[\langle\dot{\boldsymbol{j}}\rangle f_{J}\right]+\frac{1}{2} \frac{\partial^{2}}{\partial J^{i} \partial J^{j}}\left[\frac{d\left\langle\delta J_{i} \delta J_{j}\right\rangle}{d t} f_{J}\right]=0
$$

Collisions with ions/neutral gas particles

Most intuitive process, yet, difficult to precisely model microphysics.

Improved over DL98, yet, still simplifed:

- Colliding particles all stick to the grain (except if no more room...)
- Depart the grain as neutral atoms, with characteristic $\mathrm{T}_{\mathrm{ev}} \sim 1000 \mathrm{~K}$ following absorption of UV photon
- Assume small kicks (see T. Hoang's talk)

Torques by passing ions ("plasma drag")

$T_{\text {gis }}{ }^{\circ} d \boldsymbol{L}$
 $\frac{d \boldsymbol{L}}{d t}=\boldsymbol{\mu} \times \boldsymbol{E}$

- Account for hyperbolic trajectories for a charged grain, and grain rotation (suppressed torque for $\omega \mathrm{b} / \mathrm{v} \gtrsim \mathrm{I}$).

- Simplifications:

- Assume straight-line trajectories for neutral grain
- Here too, torques can be impulsive, $\delta \omega \approx \omega$ (moreover assume ω constant during interaction time).

Emission of infrared photons

- Basic process:

Excitation: $L_{\gamma}^{2}=2 \hbar^{2}$
Damping: $\quad \frac{d L_{z}}{d t} \propto \omega \int \frac{F_{\nu}}{\nu^{2}} d \nu$
(prefactors depend on in-plane or out-of plane character of vibrational modes)

Note: indeed nearly continuous as long as J >> |

Emission of infrared photons

- Simplifications in SPDUST:
- IR emission computed with a simplified model.
- Assume 2/3-1/3 ip, op modes (order unity error at most). - Assume radiation field is $\chi<$ lSRF> (so can precompute). Could be very different depending on region. (see L. Verstraete's talk for radiative transfer).
- Could couple SpDUST with, e.g. DUSTEM, for computing $\mathrm{F}_{\mathrm{v}}(\mathrm{IR})$? Speed may be an issue.

Electric dipole emission (and absorption...)

- A rotational damping process
- Checked that absorption of CMB photons (the corresponding excitation!) is negligible (<20\% increase in emissivity in diffuse environments)
- In passing, find that optical depth is $\sim 10^{-26} \mathrm{NH}_{\mathrm{H}}$ for standard dust grain abundances. If enough dust in circumstellar disks, could be optically thick.

Conclusions

- SPDUST is a fast, relatively detailed code, still with many simplifications.
- The most influential parameters (size distribution, dipole moments) can be easily changed as an input
- Improvements clearly possible, but may significantly slow down the code. Are they worth it as of now?

