SPDUST

An overview of the implemented spinning dust model and its limitations

Yacine Ali-Haïmoud (IAS)

In collaboration with Clive Dickinson, Chris Hirata and Kedron Silsbee

AME Workshop, Manchester

July 2nd 2012

- Erickson 1957
- Hoyle & Wickramasinghe 1970
- Ferrara & Dettmar 1994
- Rouan et al 1992
- Draine & Lazarian 1998a,b

Power radiated classically:

$$P = \frac{2}{3c^3} \ddot{\mu}^2 \qquad \frac{dP}{d\nu} = \frac{2}{3c^3} \omega^4 \sum_i P_{\mu_i}(\nu)$$

Emissivity =

grain abundance (and size, shape, dipole moment)

 $\times \frac{dP}{dv(v|J)}$ $\otimes \frac{Proba(J)}{V}$

Grain size distribution

- Typically a few percent of interstellar C in PAHs is required to reproduce the observed extinction and 3-25 μ m emission.
- Assume log-normal distribution centered around a~4 Å, but the exact shape is uncertain.
- This is essentially an adjustable external parameter.
- See L.Verstraete's talk for more on small grains

Grain shape

- Assume grains are disks for $24 < N_C < 100$ and spheres for $N_C > 100$.
- Reality is of course more complex

From Spitzer website

From Wright's website

Electric dipole moments

N-circumcoronenes

N-circum-circumcoronenes

TABLE 5 CALCULATED DIPOLE MOMENTS FOR THE SINGLY SUBSTITUTED ISOMERS OF THE N-CORONENE, N-OVALENE, N-CIRCUMCORONENE, AND N-CIRCUM-CIRCUMCORONENE CATIONS

Species	DIPOLE MOMENTS		
	μ _a (D)	μ _b (D)	μ (D)
N-coronen	e Cations		
1N	5.48	0.19	5.49
2N	3.69	0.00	3.69
3N	2.67	0.00	2.67
N-ovalene	e Cations		
1N	7.10	0.98	7.17
1′N	5.38	4.81	7.21
1″N	4.92	4.26	6.51
1‴N	0.00	3.47	3.47
2N	5.25	1.19	5.38
2′N	1.59	3.65	3.98
3N	4.32	1.02	4.44
3′N	1.29	1.99	2.37
4N	0.00	1.56	1.56

Hudgins, Bauschlicher & Allamandola 2005

Electric dipole moments

- In principle a physical model of small grains would provide shape + dipole (given charge state) at once.
- What is actually present in nature is not clear.
- Default: 3d gaussian distribution with $\langle \mu^2 \rangle = N_{\rm at} \beta^2$ with β = 0.4 Debye. Also an external adjustable parameter in SPDUST.

Emissivity =

grain abundance (and size, shape, dipole moment)

x dP/dv(v|J)

 $\otimes \operatorname{Proba}(J)$

Rotational configuration of disk-like grains

9

- UV photons excite grain to $T_{vib} \sim 1000 \text{ K}$
- T_{rot} = T_{vib} (at constant J) due to efficient rotation-vibration coupling
- Grain cools but T_{rot} freezes at $T_{fr} \gtrsim 70 \text{ K}$

$$P(\cos \theta | J) \propto \exp\left[-\frac{E(J, \theta)}{kT_{\rm fr}}\right], \text{ with } E(J, \theta) \equiv \frac{J^2}{2I_s} \left[1 - \frac{1}{2}\cos^2 \theta\right]$$

 $T_{\rm fr} \ll J^2/I_s \Rightarrow \theta = 0 \ (\pi) \ , \ T_{\rm fr} \gg J^2/I_s \Rightarrow \theta \text{ randomized}$

Rotational configuration of disk-like grains

- In SPDUST: either $T_{fr} \le E_{rot}$ (case 1, as in DL98), or $T_{fr} \ge E_{rot}$ (case 2, SPDUST.2).
- Case 2 results in enhanced emissivity due to larger rotational frequencies (~x2, for a given J
- -- but characteristic J is smaller) See T. Hoang's talk for more

Emissivity = grain abundance (and size, shape, dipole moment)

x dP/dv(v|J)

Angular momentum distribution: Proba(J|environment)

• In all generality, should solve a master equation:

$$\frac{\partial f_{\boldsymbol{J}}}{\partial t} = \int d\boldsymbol{J}' \left[f_{\boldsymbol{J}'} T(\boldsymbol{J}' \to \boldsymbol{J}) - f_{\boldsymbol{J}} T(\boldsymbol{J} \to \boldsymbol{J}') \right] = 0$$

- In SPDUST, as in DL98, we assume $\langle \Delta J^2 \rangle \ll J^2$ See T. Hoang's talk for regime of validity of this assumption
- Replace master equation by Fokker-Planck equation:

$$\frac{\partial f_{\boldsymbol{J}}}{\partial t} = -\frac{\partial}{\partial \boldsymbol{J}} \left[\langle \boldsymbol{J} \rangle f_{\boldsymbol{J}} \right] + \frac{1}{2} \frac{\partial^2}{\partial J^i \partial J^j} \left[\frac{d \langle \delta J_i \delta J_j \rangle}{dt} f_{\boldsymbol{J}} \right] = 0$$

drag/dissipation excitation/fluctuation

Collisions with ions/neutral gas particles

Most intuitive process, yet, difficult to precisely model microphysics.

Improved over DL98, <u>yet, still simplifed:</u>

- Colliding particles all stick to the grain (except if no more room...)

- Depart the grain as neutral atoms, with characteristic T_{ev} ~1000 K following absorption of UV photon

- Assume small kicks (see T. Hoang's talk)

Torques by passing ions ("plasma drag")

• Account for hyperbolic trajectories for a charged grain, and grain rotation (suppressed torque for $\omega b/v \ge I$).

• <u>Simplifications:</u>

- Assume straight-line trajectories for neutral grain

- Here too, torques can be impulsive, $\delta \omega \gtrsim \omega$ (moreover assume ω constant during interaction time).

Emission of infrared photons

• Basic process:

Excitation: $L_{\gamma}^2 = 2\hbar^2$ Damping: $\frac{dL_z}{dt} \propto \omega \int \frac{F_{\nu}}{\nu^2} d\nu$

(prefactors depend on in-plane or out-of plane character of vibrational modes)

Note: indeed nearly continuous as long as J >> I

Emission of infrared photons

- <u>Simplifications in SPDUST</u>:
- IR emission computed with a simplified model.
- Assume 2/3-1/3 ip, op modes (order unity error at most). - Assume radiation field is χ <ISRF> (so can precompute). Could be very different depending on region. (see L. Verstraete's talk for radiative transfer).
- Could couple SPDUST with, e.g. DUSTEM, for computing $F_{\nu}(IR)$? Speed may be an issue.

Electric dipole emission (and absorption...)

- A rotational damping process
- Checked that absorption of CMB photons (the corresponding excitation!) is negligible (< 20% increase in emissivity in diffuse environments)
- In passing, find that optical depth is ~10⁻²⁶ N_H for standard dust grain abundances. If enough dust in circumstellar disks, could be optically thick.

Conclusions

- SPDUST is a fast, relatively detailed code, still with many simplifications.
- The most influential parameters (size distribution, dipole moments) can be easily changed as an input
- Improvements clearly possible, but may significantly slow down the code. Are they worth it as of now?